Video: Don't call it vaporware: Scientists use cloud of atoms as optical memory device
Thursday, April 4, 2013Talk about storing data in the cloud.
Scientists at the Joint Quantum Institute (JQI) of the National Institute of Standards and Technology (NIST) and the University of Maryland have taken this to a whole new level by demonstrating* that they can store visual images within quite an ethereal memory device?a thin vapor of rubidium atoms. The effort may prove helpful in creating memory for quantum computers.
Their work builds on an approach developed at the Australian National University, where scientists showed that a rubidium vapor could be manipulated in interesting ways using magnetic fields and lasers. The vapor is contained in a small tube and magnetized, and a laser pulse made up of multiple light frequencies is fired through the tube. The energy level of each rubidium atom changes depending on which frequency strikes it, and these changes within the vapor become a sort of fingerprint of the pulse's characteristics. If the field's orientation is flipped, a second pulse fired through the vapor takes on the exact characteristics of the first pulse?in essence, a readout of the fingerprint.
"With our paper, we've taken this same idea and applied it to storing an image?basically moving up from storing a single 'pixel' of light information to about a hundred," says Paul Lett, a physicist with JQI and NIST's Quantum Measurement Division. "By modifying their technique, we have been able to store a simple image in the vapor and extract pieces of it at different times."
The animation shows the NIST logo that was stored within a vapor of rubidium atoms and three different portions of it that researchers were able to extract at will. Animation combines three actual images from the vapor extracted at different times. Credit: NIST/JQI
"What we've done here is store an image using classical physics. However, the ultimate goal is to store quantum information, which a quantum computer will need," he says. "Measuring what the rubidium atoms do as we manipulate them is teaching us how we might use them as quantum bits and what problems those bits might present. This way, when someone builds a solid-state system for a finished computer, we'll know how to handle them more effectively."
###
*J.B. Clark, Q. Glorieux and P.D. Lett. Spatially addressable readout and erasure of an image in a gradient echo memory. New Journal of Physics, doi: 10.1088/1367-2630/15/3/035005, 06 March 2013.
National Institute of Standards and Technology (NIST): http://www.nist.gov
Thanks to National Institute of Standards and Technology (NIST) for this article.
This press release was posted to serve as a topic for discussion. Please comment below. We try our best to only post press releases that are associated with peer reviewed scientific literature. Critical discussions of the research are appreciated. If you need help finding a link to the original article, please contact us on twitter or via e-mail.
This press release has been viewed 29 time(s).
space weather sunspots pac 12 tournament sun storm tri international criminal court ios 5.1
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.